Planning and Learning From Interventions

When and Where

Thursday, April 07, 2022 3:30 pm to 4:30 pm


Caroline Uhler, MIT


Massive data collection holds the promise of a better understanding of complex phenomena and ultimately, of better decisions. An exciting opportunity in this regard stems from the growing availability of perturbation/intervention data (manufacturing, advertisement, education, genomics, etc.). In order to obtain mechanistic insights from such data, a major challenge is the development of a framework that integrates observational and interventional data. I will present such a causal framework and discuss how it allows predicting the effect of yet unseen interventions and identifying the optimal interventions to perform.

Please join the event.

About Caroline Uhler

Picture of Caroline UhlerCaroline Uhler is an associate professor in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society at MIT. In addition, she is a core institute member at the Broad, where she co-directs the newly-launched Eric and Wendy Schmidt Center. She holds an MSc in mathematics, a BSc in biology, and an MEd all from the University of Zurich. She obtained her PhD in statistics from UC Berkeley in 2011 and then spent three years as an assistant professor at IST Austria before joining MIT in 2015. She is a Simons Investigator, a Sloan Research Fellow, and an elected member of the International Statistical Institute. In addition, she received an NSF Career Award, a Sofja Kovalevskaja Award from the Humboldt Foundation, and a START Award from the Austrian Science Foundation. Her research lies at the intersection of machine learning, statistics, and genomics, with a particular focus on causal inference, representation learning, and gene regulation.