With this in mind, the interest of the course is in leveraging numerical computations in pursuit of these fundamental calculations within the hierarchy of

Course Topics

- Bootstraping Methods
- Constrained optimization
- Newton-Like Methods
- Deep Neural Networks (DNNs)
- Textbook Readings

Programming Homework Assignment 1

- Floating-Point Numbers
- Programming Portfolio Assignments

Regrade requests regarding the

- Challenges
- Students must be able to work from a computer with reliable internet connectivity during the normal three (3) hour class lecture period on course days with Coding Challenges.

Grading will be automated with

- The
- Two five-minute breaks may be taken during the
- Automated test wrongly failing for nearly all students

For private communications, e.g., regarding accomodations, etc., use the course email

- sta410@utoronto.ca

Challenges

- Students may not receive or share information about the

Coding Challenges

- As a result of physical proximity to any other individuals during the

In-person lectures will not be recorded. Online lectures will not be set to record automatically; however, if remembered (or reminded) the "Zoom record meeting" can be

Programming Portfolio Assignments

- Only completed and apppropriately formatted submissions will be graded.

Beause of

- It's not necessary, but if you wish to have a local

Expectation/minorization-maximization, e.g., for censoring and mixture models

Expectation-Maximization

Regularization

Comparison of Bases: Lagendre versus Laguerre Polynomials for

Computational Efficiency in Standard Polynomial Bases

Transformation Applicability

Gram–Charlier and Edgeworth Series and Cornish-Fisher Expansion

LU Decomposition

Eigendecomposition

Symplectic Integration

Modulus Recursion

Biased Sampling

Inverse Autoregressive Flows (IAFs)

Bit Arithmatic II: Special "Numbers"

Pseudorandom Numbers

Comparing Bases: Lagendre versus Laguerre Polynomials for

Coding Challenges

- Students may not receive or share information about the

Automated test wrongly failing for some students but not others

Only completed and apppropriately formatted submissions will be graded.

Paired students must BOTH separately submit their (common) work

Expectation-Maximization, e.g., for censoring and mixture models

Expectation-minorization-maximization, e.g., for censoring and mixture models

Expectation-Maximization

Regularization

Comparison of Bases: Lagendre versus Laguerre Polynomials for

Computational Efficiency in Standard Polynomial Bases

Transformation Applicability

Gram–Charlier and Edgeworth Series and Cornish-Fisher Expansion

LU Decomposition

Eigendecomposition

Symplectic Integration

Modulus Recursion

Biased Sampling

Inverse Autoregressive Flows (IAFs)

Bit Arithmatic II: Special "Numbers"

Pseudorandom Numbers

Comparing Bases: Lagendre versus Laguerre Polynomials for

Coding Challenges

- Students may not receive or share information about the

Automated test wrongly failing for some students but not others

Only completed and apppropriately formatted submissions will be graded.

Paired students must BOTH separately submit their (common) work