$STA410 \ Statistical \ Computation \ (L5101 + L2501)$

STA2102 Computational Techniques in Statistics (L0201)

Winter 2023 | Scott Schwartz

Typical Weekly Schedule

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Complete Prereading (${\sim}3$ hours)		\checkmark	\checkmark				
Complete Programming (${\sim}4$ hours)			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Discussion MS 3154 6:10–9 PM ET			\checkmark				
Office Hour MS 3154 9-10 PM ET			\checkmark				
Office Hour zoom 5-7 PM ET					\checkmark		
Programming Due Sunday 11:59 PM ET							\checkmark

Assignments

	Due Weekly	On Feb 15 and Apr 5	On Mar 1	TBA	
	Programming Assignments	Coding Challenges	Midterm Exam	Final Exam	
STA130/STA2102	28% = 4\% \times 7 (best of 9)	32% = 16%+16%	20%	20%	
STA2102 Optional	42% = 6\% \times 7 (best of 9)	32% = 16%+16%	13%	13%	

Course Policies

Programming Assignments

Late Enrolments Week 1-4 Programming Assignments may be submitted LATE by Feb 12, 11:59 PM ET with permission from sta410@utoronto.ca

Sickness The highest 7 of 9 Programming Assignments scores are used and there are no due date extensions for sickness

Illness Absence Declaration	
Feb 15 Coding Challenge	will be reweighted to the <i>Midterm</i> if an illness declaration is submitted through ACORN and forwarded to sta410@utoronto.ca by Feb 15
Apr 5 Coding Challenge	will be reweighted to the <i>Final</i> if an illness declaration is submitted through ACORN and forwarded to sta410@utoronto.ca by Apr 5
Mar 1 Midterm Exam	will be reweighted to the <i>Final</i> if an illness declaration is submitted through ACORN and forwarded to sta410@utoronto.ca by Mar 1
Final Exam	Petitions for Deferred <i>Final Exams</i> may be submitted to FAS
Accomodations/Exceptions	

 Accomodations
 For course accomodations please contact Accessibility Services or your College Registrar and alert sta410@utoronto.ca

 Exceptional Circumstances
 For exceptional circumstances please contact your College Registrar

Grading

2.0 2.3	2.7	3.0	3.3	3.7	4.0
STA2102	STA2102				
Failing	Passing				
2.0	2.3 STA2102 Failing	2.32.7STA2102STA2102FailingPassing	2.32.73.0STA2102STA2102FailingPassing	2.3 2.7 3.0 3.3 STA2102 STA2102 Failing Passing	2.3 2.7 3.0 3.3 3.7 STA2102 STA2102 Failing Passing Failing Failing

Course Topics and Dates

		Discussion Topics / Programming Topics (28%)	Programming Due	
Week 1	Jan 9-11	Syllabus, Floating-Point, Pseudorandomness		
	Jan 11-15	Integer Bit Representation, Modulus Recursion	Jan 15, 11:59 PM ET	
Week 2	Jan 16-18	Floating-Point Density, Numeric Errors, Tricks		
	Jan 18-22	Sum Roundoff Error, Catastrophic Cancellation	Jan 22, 11:59 PM ET	Jan 22 Last Day to Enrol
Week 3	Jan 23-25	Singular Values, PCA/PCR, Condition, $Ax\!=\!b$		
	Jan 25-29	Gram-Schmidt, Cholesky Factor Decomposition	Jan 29, 11:59 PM ET	
Week 4	Jan 30 - Feb 1	Algorithmic Speed, $X \hat{eta} pprox y$, Iterative Methods		
	Feb 1-5	Convolution Counting, Automatic Differentiation	Feb 5, 11:59 PM ET	Week 1-4 Programming
Week 5	Feb 6-8	Vector/Function Spaces, More on $X \hat{eta} {ppsla} y$, FFT		May be submitted LATE
	Feb 8-12	Interpolation, Radix-2 FFT Recursive Algorithm	Feb 12-19, 11:59 PM ET	by Feb 12, 11:59 PM ET
Week 6	Feb 15	6-9 PM FT In-Person Coding Challenge (16%)		
Week o	In-Person	You may use your laptop in MS 3154 (n=250) or	an IIT Lab Workstation	in SS561 (n=49)
Week 7	Feb 20-25	READING WEEK		
Week 8	Mar 1	6-9 PM ET In-Person Midterm Exam (20%)		
	In-Person	MS 3154 (n=250)		
Week 9	Mar 6-8	Optimization, Information, Variational Inference		
	Mar 8-12	Newton's Method, Fixed-Point Iteration Methods	Mar 12, 11:59 PM ET	
Week 10	Mar 13-15	Fisher Scoring, Non- L_2 Loss, More Optimization	·	
	Mar 15-19	Iteratively Reweighted LS, nonlinear Gauss-Seidel	Mar 19, 11:59 PM ET	Mar 19 Last Day to Drop
Week 11	Mar 20-22	Integral Approximation and Estimation, Sampling		
	Mar 22-26	ТВА	Mar 26, 5:00 PM ET	
Week 12	Mar 27-29	MCMC, Gibbs, Metropolis-Hastings, Hamiltonian		
	Mar 29 - Apr 2	ТВА	Apr 2, 11:59 PM ET	
Wook 12	Apr 5	6-9 PM FT In-Person Coding Challenge (16%)		Apr 6 Last Day to CP/NCP
WEEK IS	In-Person	You may use your lanton in MS 3154 $(n-250)$ or	an IIT Lab Workstation	in SS561 (n=49)
	Apr 11-28 TBA	In-Person Final Exam (20%)		

Course Components

Quercus Course Page	Announcements are made in Quercus	Quercus will link additional course resources
Markus	Programming Assignments Submissions	Marking and regrades will be done in Markus
UofT Jupyterhub	Course Cloud Coding Environment	Requires a UofT UTORid
Google Colab	Course Cloud Coding Environment	Requires a private google account
IIT Computer Labs	Drop in workstations SS561 (n=49)	CR325(n=30), RW109(n=24), RW107(n=20)
In-Person Lecture	MS 3154 Wed 6:10-9:00 PM ET	WILL NOT BE RECORDED
In-Person Office Hour	MS 3154 Wed 9:00-10:00 PM ET	WILL NOT BE RECORDED
Online Office Hours	zoom Friday 5-7 PM ET	WILL NOT BE RECORDED
Discussion Board	~1-2 weekday (only) response time	All non-private course communication
sta410@utoronto.ca	~1-2 day weekday (only) response time	Private course communication ONLY
Coding Challenges	Wed 6:10—9:00 PM ET Feb 15 and Apr 5	You may use your laptop in MS 3154 (n=250)
		or an IIT Lab Workstation in SS561 (n=49)
Midterm Exam	MS 3154 Wed 6:10-9:00 PM FT Mar 1	

Final Exam	TBA: will take place between Apr 11-28

Course Design

1. Statistics is a desirable skill set, particularly in conjunction with coding ability: this course gives you an opportunity to practice and build valuable Python (and coding) skills.

Python is chosen instead of R for this course because

- Python is more general purpose and ubiquitous
- Python is more like low level programming languages (such as C , C++ , and Fortran)
- Python naturally supports computational algorithm development in addition to guided data analysis

Students are expected to code via UofT JupyterHub or google colab. Local Python installations (conda, mamba, etc.) and other code editors (VSCode, PyCharm, Atom, pico/nano vi, emacs, etc.) will not be supported.

2. This course will be based on Q&A discussions and conversations, not lectures: come to class ready to explain the material to other students, or ask clear questions for clarification. Comfort with self-learning will lead to professional success and helps create new opportunities. Communication ability is extremely important for career progression.

Students are expected to read and understand the course material to the best of their ability prior to coming to class, and then practice their communication skills during class. The course notes for each week will include a sufficiently self-contained and complete synthesis of selected material from

- **Computational Statistics** by James E. Gentle (Springer)
- Computational Statistics (Second Edition) by G. H. Givens and J. A. Hoeting (Wiley)
- Previous STA410/2102 course notes from Keith Knight
- 3. Less is more, as this course is interested in building foundations: we'll cover numeric pitfalls, fundamental linear algebra topics, least squares and beyond, the foundations of modern differentiation-based optimization, and estimation-based integration with MCMC.

The empahsis firstly on foundations and then on modern differentiation and integration topics is made **at the expense** of several topics typially found in a **Statistical Computation** course

- Select linear algebra topics, e.g., sparse matrices, fast hadamard transforms, randomized numerical linear algebra
- Sampling from specific statistical distributions and nonparametric inference with bootstrapping
- Combinatorial (discrete) optimzation, e.g., with simulated annealing
- Constrained optimization, e.g., Lagrange multipliers, and interior and exterior point algorithms (e.g., for quantile regression)
- Expectation/minorization-maximization, e.g., for censoring and mixture models

but the successful student of this course would certainly be capable (and encouraged) to pursue these topics upon completion of the course.