Land Acknowledgement
We wish to acknowledge the land on which the University of Toronto operates. For thousands of years, it has been the traditional land of the Huron-Wendat, the Seneca, and most recently, the Mississaugas of the Credit River. Today, this meeting place is still the home to many Indigenous people from across Turtle Island and we are grateful to have the opportunity to work on this land.

Table of Contents
1. Course and Sections ... 2
2. Instructor and Team... 2
3. Class Time .. 2
4. Course Content ... 2
5. Course Books.. 3
6. Course Materials, including lecture notes .. 4
7. Assessments.. 4
8. Computing .. 6
9. Getting Help... 7
10. Accommodations .. 8
11. Academic Integrity ... 9
12. Your responsibilities ... 9
13. Weekly Lecture Schedule ... 10

Course Formats Highlights
This course is an in-person course. Any deviations from this document will be announced on the Quercus course pages. Please keep regularly visited the website link FAS student FAQs and the course pages at the Quercus.
1. **Course and Sections**

STA 305H1F: Design and Analysis of Experiments
Sections for STA 305 H1S: L0101 and L0201

2. **Instructor and Team**

Professor: Murari Singh
murarii.singh@utoronto.ca
Office hours (via zoom meeting): 3 – 4 pm (The link will be posted on the Quercus.)

TAs and their office hours will also be announced on the Quercus.

3. **Class Time**

Section **L0101**: Monday – BA1160 (11:10 am - 12 pm), **Wednesday** - BA1160 (10:10 am - 12 pm)
First lecture: Monday, January 9, 2023

Section **L0201**: **Tuesday** – BA1160 (1:10 - 2 pm), **Thursday** – BA1160 (1:10 – 2 pm, 2:10 - 3 pm)
First lecture: Tuesday, January 10, 2023

4. **Course Content**

This course will introduce the fundamental concepts of the design of scientific studies including the design of experiments and observational studies. Students will become acquainted with statistical methods used to design and analyze experiments and observational studies. This course will cover experiments versus observational studies, clinical trial design, comparing several groups using a completely randomized design, randomized blocks, nonparametric methods, Latin squares, incomplete block designs, square lattices, rectangular lattices, factorial designs, response surface designs, causal inference in randomized and non-randomized studies, and adjusting for selection bias using propensity score methods.

The learning objectives of this course are:

- Understand the ideas, principles, and considerations that are common to the design and analysis of scientific studies including the statistical design of experiments and observational studies.
- Develop a statistical toolbox of methods for the design and analysis of experiments and observational studies.
- Identify appropriate uses and interpretations of experimental designs, and observational studies, including their strengths and limitations.
- Integrate the application with theory, of experimental designs and observational studies, using R/Rmd tools.

Topics

Experiments, observational studies, and causal inference

Experiments versus observational studies, and causal inference in randomized experiments.

Selection Bias in Observational Studies

Causal inference in randomized experiments versus observational studies. Introduction to the propensity score and three ways to use the propensity score to adjust for selection bias: matching;
sub classification; direct regression adjustment.

Probability and Statistics
Mathematical statistics used in experimental design.

Comparing Several Groups
Comparing several groups in an experimental and observational setting and deciding whether
differences that are found are likely to be real or due to chance.

Power and Sample Size
Power and sample size will be introduced for several designs. Applications will include the design
and analysis of clinical trials with continuous or binary endpoints.

Blocking Techniques
Blocked designs, Latin squares, randomized incomplete block designs, square and rectangular
lattices. Statistical analysis of data including nonparametric methods in few cases.

Factorial Designs
Factorial, blocked factorial, and fractional factorial designs will be discussed.

Experiments with Random factors
Two factor factorial – random effects models, mixed effects models

Split Plot Designs
Split plot designs will be discussed as an example of restricted randomization in the design of
experiments.

Response Surface Methods
Response surfaces of first and second orders - method of steepest ascent, construction of the
designs, and analyses

5. **Course Books**

5.1 Required

5.2 Optional

5. Design and Analysis of Experiments: Volume 2- Advanced Experimental Design, K. Hinkelmann and O.

NB: Textbooks 2, 3, 6 are available electronically through the UofT library (i.e., electronic copies of both these textbooks are available at no extra cost)

6. Course Materials, including lecture notes

All course materials are copyrighted. If they are from the textbook, the copyright belongs to the textbook publisher. If they are provided by an instructor (for example, lecture notes, computer code, assignments, tests, solutions) the copyright belongs to the instructor. Distributing materials online or sharing them in any way is a copyright violation and, in some situations, an academic offence. Course materials are provided for the exclusive use of enrolled students. Do not share them with others. I do not want to discover that a student has put any of my materials into the public domain, has sold my materials, or has given my materials to a person or company that is using them to earn money. The University will support me in asserting and pursuing my rights, and my copyrights, in such matters.

7. Assessments

7.1 Grading scheme and Assessment Environment

Students will be evaluated according to the following marking scheme.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Weight (undergraduates)</th>
<th>Section 0101 Date/Time/Day</th>
<th>Section 0201 Date/Time/Day</th>
<th>Assessment Formats/platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Homework (HW) (3 × 5%)</td>
<td>15%</td>
<td>HW1 (Jan 27), HW2 (Feb 17), HW3 (Mar 24) Fridays (due dates)</td>
<td></td>
<td>SA questions on Crowdmark</td>
</tr>
<tr>
<td>2 Mid-term Test</td>
<td>30% (35%)</td>
<td>Mar 1, 10:20 am -11:50 pm, Wednesday</td>
<td>Mar 2, 1:20 – 2:50 pm, Thursday</td>
<td>In-person (in classroom)</td>
</tr>
<tr>
<td>3 Project Report</td>
<td>10%</td>
<td>April 6, Thursday</td>
<td></td>
<td>Crowdmark & Quercus</td>
</tr>
<tr>
<td>4 Final Exam</td>
<td>45% (40%)</td>
<td>Scheduled by the Faculty</td>
<td></td>
<td>In-person (by FAS)</td>
</tr>
</tbody>
</table>

The marking scheme will use the higher of the combined marks for course resulting from the options (a) and (b) in above.

Minimum passing requirement
In addition to the U of T grading policy, students must complete the final assessment to pass the course.

7.2 Assessment Formats/Platforms, Missed Assessments and Marking Concerns

7.2.1 Homework assignments

The homework assignments are short-answer questions distributed to the students via Crowdmark. Students will upload their answer on the Crowdmark platform.
Late Penalty for Homework Assignments

A 25% per day penalty will be applied to assignments that are submitted late. For example, this means that if an assignment is due at 17:00 ET, and is submitted at 17:01 ET, then it will incur a 25% late penalty. If it is submitted at 17:01 ET the following day, then it will incur a 50% late penalty.

Missed Homework Assignments (due to valid reasons)

If a homework is missed for a valid reason (e.g., illness or personal emergency), then within one week following the assessment you must fill out the absence declaration form on ACORN. For each such missed assignment, for undergraduates, 50% of the total weight (5%) for that homework assignment will be shifted to the other homework assignments (i.e., 2.5% weight will be shifted to other homework assignments) and the remaining to the final assessment (i.e., 2.5% weight shifted to the final). If you declare absence from all the homework assignments, then their total weights will be shifted to the final. A missed homework with undeclared absence on ACORN will be assigned a grade of zero.

7.2.2 Midterm test

The midterm test will be in-person test during class time on the test day. The test will have short-answer questions including computations and proofs. Short answers may require you to interpret R output and use them to answer. You will need to know R syntax to complete for homework but will not be tested for R syntax on the test and exam. However, you will need to know how to interpret output from R.

The in-person exams cannot be submitted late.

Missed Midterm Test

If the midterm test is missed for a valid reason (e.g., illness or personal emergency), then within one week following the assessment you must fill out the absence declaration form on ACORN. In this case, the full weight of the midterm test will be shifted to the final exam (i.e., the final exam will be 75% for undergraduates). A missed midterm with undeclared absence on ACORN will be assigned a grade of zero.

7.2.3 Project work

The project work requires development of a report based on a well-designed study incorporating experimental design, collected/simulated data, analysis, R/Rmd codes, results and discussion and a video presentation following the guidelines issued by the instructor.

Late Project Submission

If the project report is submitted after the due date, then a late penalty of 20% per day (i.e., for every 24 hour interval) will be applied to the component of the project handed in late. For example, if the project-report PDF file component is submitted after 5 days (including weekend days) then you will receive a grade of zero for the project-report PDF file component.

Missed Project Submission

• If the project work is missed for a valid reason (e.g., illness or personal emergency), then within one week following the assessment and before the final exam, you must fill out the absence declaration form on ACORN.

• If the project work is missed for a valid reason, then half the weight of the project will be shifted to the
homework assignment and half will be shifted to the final exam. So, for undergrads 5% weight is shifted onto the homework assignments and 5% is shifted onto the final exam.

If you declare absence from all the homework assignments and the project work, then total of their weights (i.e., 25%) will be shifted to the final exam.

7.2.4 Final Exam

The final exam will be in-person during the time, date, and place decided by the Faculty of Arts and Science (FAS). The exam will have short-answer questions including computations and proofs. Short answers may require you to interpret R output and use them to answer. You will not be tested for R syntax on the exam, but you will need to know how to interpret output from R.

The in-person exams cannot be submitted late.

Students who are eligible for special test accommodations will be facilitated through the university's Accommodated Testing Services (ATS).

Final Exam Absences or Exemptions

If a student misses the final exam for any reason, then they should contact their College Registrar’s office or work through Accessibility Services if it is a matter of accommodation.

7.3 Marking concerns

Any requests to have a marked work (homework, midterm, and project) re-evaluated must be made in writing to the instructor within one week of the date the work was returned. The request must contain a justification for consideration.

For the final exam recheck or reread, consult FAS website: https://www.artsci.utoronto.ca/current/faculty-registrar/exams-assessments/exam-recheck-or-reread.

8. Computing

R

We will use R for all examples. R is freely available for download at http://cran.r-project.org for Windows, Mac, and Linux operating systems. For the tests and exam, you will need to know how to interpret output from R.

RStudio

RStudio is a fantastic integrated development environment (IDE) for R. It is freely available at https://www.rstudio.com/products/rstudio/.

I am assuming that students have never used R before. I will provide you with the R syntax for all examples in lecture, which should be sufficient for you to complete the practice problems.

Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations, and narrative text (https://jupyter.org).

R can be run in a Jupyter notebook in any web browser by logging into https://utoronto.syzygy.ca
(https://utoronto.syzygy.ca) with your UTORid.

To get started using R in a Jupyter notebook, see this page (jupyterstarter.html). Additionally, you can also use R Studio through the U of T Jupyterhub, by selecting the RStudio option and logging in with your utorID and password, available here: https://jupyter.utoronto.ca.

Calculators

You will need a calculator in this course. Any calculator that has logarithmic functions will be sufficient. Calculators on phones or other devices equipped to communicate with the outside world (for example, through the internet or cellular or satellite phone networks) will not be permitted during the term tests or final exam.

9. Getting Help

9.1 Online Discussion Board

This term you will have the option to use Piazza for class discussion. If you decide not to use Piazza, it will not disadvantage you in any way, and will not affect official University outcomes (e.g., grades and learning opportunities). If you choose not to opt-into Piazza, then you can ask questions or discuss course material with the instructor or Teaching Assistants (TAs) during office hours.

Be sure to read Piazza’s Privacy Policy (https://piazza.com/legal/privacy) and Terms of Use (https://piazza.com/legal/terms) carefully. Take time to understand and be comfortable with what they say. They provide for substantial sharing and disclosure of your personal information held by Piazza, which affects your privacy. If you decide to participate in Piazza, only provide content that you are comfortable sharing under the terms of the Privacy Policy and Terms of Use.

The Piazza system is highly catered to getting you help fast and efficiently from classmates, the TA, and the lecturers. Rather than emailing questions to the teaching staff, we encourage you to post your questions on Piazza. To sign up for the discussion forum click on the link for your section:

https://piazza.com/utoronto.ca/winter2023/sta305h1slec0101_0201

9.2 Additional help

Need extra help with the coursework? Here are some options:

- For continued class discussion and questions outside of class, try posting on the discussion forums. The instructor and TAs will be monitoring them regularly.
- You can visit your instructor or the teaching assistants during their office hours.

E-mail should only be used for personal emergencies or personal matters.

9.3 How to communicate with your instructor

Questions about course material such as:

- How do I do Question 3.7 in the textbook?
- What is standard deviation?
- When is the midterm?

Should be posted on the discussion forums. Questions can be posted anonymously (so that the author is anonymous to
other students but not to the instructors), if desired.

Before emailing your instructor, please:
1. re-read this syllabus to see if the answer is here,
2. check FAS student FAQs
3. check the discussion posts on Quercus,
4. ask your TA,
5. post your question to the appropriate discussion board on Quercus.
6. go to office hours

If your question is not answered after looking through these resources, or for private communication, such as: I missed the test because I was ill, then e-mail your instructor. If you refer to the contents of other emails, then be sure to provide the contents being referred to altogether in a single email message. **When emailing your instructor, please use the subject line: STA305 – LEC0101 or STA305 – LEC0201.** Here, STA305 is your course code and LEC0101/L0201 is your section (same as on ACORN). **If this subject is not included, we may miss your email.**

Use your utoronto.ca e-mail account to ensure that your message does not automatically go to a Junk folder and include your full name and student number.

10. Accommodations

10.1 Religious Accommodation

As a student at the University of Toronto, you are part of a diverse community that welcomes and includes students and faculty from a wide range of cultural and religious traditions. For my part, I will make every reasonable effort to avoid scheduling tests, examinations, or other compulsory activities on religious holy days not captured by statutory holidays. Further to University Policy, if you anticipate being absent from class or missing a major course activity (such as a test or in-class assignment) due to a religious observance, please let me know as early in the course as possible, and with sufficient notice (at least two to three weeks), so that we can work together to make alternate arrangements. More information: https://www.viceprovoststudents.utoronto.ca/policies-guidelines/accommodation-religious/.

10.2 Students with Disabilities or Accommodation Requirements

Students with diverse learning styles and needs are welcome in this course. If you have an acute or ongoing disability issue or accommodation need, you should register with Accessibility Services (AS) at the beginning of the academic year by visiting http://www.studentlife.utoronto.ca/as/new-registration. Without registration, you will not be able to verify your situation with your instructors, and instructors will not be advised about your accommodation needs. AS will assess your situation, develop an accommodation plan with you, and support you in requesting accommodation for your course work. Remember that the process of accommodation is private: AS will not share details of your needs or condition with any instructor, and your instructors will not reveal that you are registered with AS.

10.3 Specific Medical Circumstances

If you become ill and it affects your ability to do your academic work, consult me right away. Normally, I will ask you for medical documentation in support of your specific medical circumstances. The University’s Verification of Student Illness or Injury (VOI) form is recommended because it indicates the impact and severity of the illness, while protecting your privacy about the details of the nature of the illness. You can submit a different form (like a letter from a doctor), as long as it is an original document, and it contains the same information as the VOI. For more information, please see http://www.illnessverification.utoronto.ca. If you get a concussion, break your hand, or suffer some other acute injury, you should register with Accessibility Services as soon as possible.
10.4 Accommodation for Personal Reasons

There may be times when you are unable to complete course work on time due to non-medical reasons. If you have concerns, speak to me or to an advisor in your College Registrar’s office; they can help you to decide if you want to request an extension or accommodation. They may be able to provide you with a College Registrar’s letter of support to give to your instructors, and importantly, connect you with other resources on campus for help with your situation.

11. Academic Integrity

All students, faculty and staff are expected to follow the University’s guidelines and policies on academic integrity. For students, this means following the standards of academic honesty when writing assignments, collaborating with fellow students, and writing tests and exams. Ensure that the work you submit for grading represents your own honest efforts. Plagiarism—representing someone else’s work as your own or submitting work that you have previously submitted for marks in another class or program—is a serious offence that can result in sanctions. Speak to me or your TA for advice on anything that you find unclear. To learn more about how to cite and use source material appropriately and for other writing support, see the U of T writing support website at http://www.writing.utoronto.ca (http://www.writing.utoronto.ca). Consult the Code of Behaviour on Academic Matters for a complete outline of the University’s policy and expectations. For more information, please see https://www.artsci.utoronto.ca/current/academic-advising-and-support/student-academic-integrity (https://www.artsci.utoronto.ca/current/academic-advising-and-support/student-academic-integrity) and http://academicintegrity.utoronto.ca (http://academicintegrity.utoronto.ca)

12. Your responsibilities

The classroom sessions for this class are designed to actively engage you in the course material. We hope you will find them interesting, challenging, and fun, and an excellent opportunity to truly learn the material.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
13. Weekly Lecture Schedule

Tentative Weekly Lecture Schedule

For the exact dates of homework, term tests and the final, please keep visiting the Course page on the Quercus. A homework assigned in advance; if topics related to some questions are not covered by one day before the due date, an announcement will be made to withdraw such questions.

Section L0101: Monday (M) & Wednesday (W); Section L0201: Tuesday (Tu) & Thursday (Th)

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| **1. (Week 1)** | Welcome and Course Design and implementation overview
Jan 9 M/10Tu | Prof. Nathan Taback textbook:
- Introduction to Observational Studies and Designed Studies/Experiments.
- Simple Comparative Experiments- Overview of common statistical concepts.
L1*.pdf: Lecture notes presented in the class and files posted on Quercus.
Jan 11W/12Th |
- Review of Mathematical Statistics (Focus: R codes). Discuss homework (L2*.pdf) |
| **2.** | Comparing Two Treatments in Completely Randomized Designs (L3*.pdf)
Jan 16M/17Tu |
Jan 18W/19Th |
- R codes: Power and sample size, power via simulation; via randomization distribution (nonparametric procedures) (L4*.pdf, L5*.pdf) |
| **3.** | (continued) Power via simulation; via randomization distribution (nonparametric procedures) (L5*.pdf)
Jan 23M/24Tu |
Jan 25W/26Th |
- Introduction to causal inference in randomized experiments (L6*.pdf)
Homework 1. Due Friday 27/1/2023 (Coverage: Weeks 1 – 3, up to “via randomization distribution (nonparametric procedures)” |
| **4.** | Design of observational studies and propensity scores (L7*.pdf)
Jan 30M/31Tu |
Feb 1W/2Th |
- (Continued) Design of observational studies and propensity scores (L8*.pdf) |
| **5.** | Prof. DC Montgomery textbook:
Feb 6M/7Tu |
Feb 8W/9Th |
- **Experiments with a single factor in CRD:** Randomized Plan, Analysis of Variance, Example
- Model Adequacy Checking, Determining the Sample Size (L9-12*.pdf) |
| **6.** | (CRD continued) Random model, Estimation and testing using regression approach.
Feb 13M/14Tu |
Feb 15W/16Th |
- Comparing more than two groups, multiple comparisons, Nonparametric Methods in the Analysis of Variance, The Kruskal–Wallis Test (L9-12*.pdf)
Homework 2. Due Friday Feb 17, 2023 (Coverage: Weeks 4 – 6) |
| **Feb 20, 2023: Closed for Family Day. Feb 20 – 24, 2023: Reading Week (no classes)** |
| **7.** | Randomized Complete Block Designs (L13-14-15*.pdf)
Feb 27M/28Tu |
Mar 1W/2Th |
L0101: Mid-term Test: Mar 1, Wednesday, 10:20 am - 11:50 pm (Topics covered: Weeks 1 – 6)
L0201: Mid-term Test: Mar 2, Thursday, 1:20 – 2:50 pm (Topics covered: Weeks 1 – 6) |
<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 6M/7Tu</td>
<td>Latin Squares, Balanced Incomplete Block Designs, Square lattices, rectangular lattices (L13-14-15*.pdf)</td>
</tr>
<tr>
<td>Mar 8W/9Th</td>
<td></td>
</tr>
<tr>
<td>Mar 13M/14Tu</td>
<td>Introduction to Factorial Experiments</td>
</tr>
<tr>
<td>Mar 15W/16Th</td>
<td>Factorial designs at two levels</td>
</tr>
<tr>
<td></td>
<td>Blocking in factorial designs of type 2^k (L16-17-18-19*.pdf)</td>
</tr>
<tr>
<td>Mar 20M/21Tu</td>
<td>(continued) Blocking in factorial designs of type 2^k</td>
</tr>
<tr>
<td>Mar 22W/23Th</td>
<td>Fractional factorial designs of type 2^{k-p} (L16-17-18-19*.pdf)</td>
</tr>
<tr>
<td></td>
<td>Chapter 9 (3^k, 3^2, 3^3; AB, ABC interaction partitioning)</td>
</tr>
<tr>
<td></td>
<td>Blocking/confounding, and fractional 3^k (examples), 3^{k-p} Examples (L16-17-18-19*.pdf)</td>
</tr>
<tr>
<td></td>
<td>Homework 3. Due Friday, Mar 24, 2022 (Coverage: Weeks 7 - 10)</td>
</tr>
<tr>
<td>Mar 27M/28Tu</td>
<td>The Two-Factor Factorial with Random Factor-effects</td>
</tr>
<tr>
<td>Mar 29W/30Th</td>
<td>Two-Factor Factorial Mixed Factor-effects (L20*.pdf)</td>
</tr>
<tr>
<td></td>
<td>Restricted randomization and split-plot designs (L21*.pdf)</td>
</tr>
<tr>
<td>Apr 3M/4Tu</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>Apr 5W/6Th</td>
<td>Introduction to Response Surface Methodology, The Method of Steepest Ascent (L22-23*.pdf)</td>
</tr>
<tr>
<td></td>
<td>Analysis of a Second-Order Response Surface, CCD, and Box - Behnken designs examples; Mixture experiments (introduction) (L22-23*.pdf)</td>
</tr>
</tbody>
</table>

Project Report: Due Thursday, April 6.

April 6: Classes end in S & Y.