UNIVERSITY OF TORONTO

TIME SERIES ANALYSIS, STA457H1 S/STA2202H S

COURSE OUTLINE

INSTRUCTOR: JEN-WEN LIN, PH.D., FRM

Office: SS6008

Office Hours: By appointment

Phone: TBA

Class Time/Place: Tuesday 6-9 pm, SS2135

Email: jenwen@utstat.toronto.ca

TA: Mark Koudstaal, markk@utstat.utoronto.ca, Lan Gong, gong@utstat.toronto.ca

Course Description

This course provides an introduction to time series analysis with finance applications. However, the techniques can be applied to other disciplines as well. Students will gain hands-on knowledge on how to analyze and model time series data after finishing this course. Topics in this course include

I. Fundamental Concepts

- a. Stochastic processes
- b. Stationarity (Weakly and Strongly)
- c. Autocovariance functions, autocorrelation functions and partial Autocorrelation Functions

II. Stationary Linear Time Series

- a. AR, MA, and ARMA (Autoregressive-Moving Average) Models
 - Causal and invertible ARMA processes
 - Moving average processes of infinite order
 - Computing the autocovariance functions of ARMA(p,q) processes
- b. Model Construction
 - Identification Techniques
 - Model Selection
 - Yule-Walker equations and Durbin-Levinson algorithm
 - Conditional maximum likelihood estimations
 - Diagnostic checking

III. Models of Non-stationary Time Series

- a. Stochastic versus deterministic time trends
- b. ARIMA (Autoregressive integrated moving average) models

IV. Prediction of Time Series

Minimum mean squared error forecasts

- Computation of forecasts
- Updating forecasts

V. Vector Autoregressive (VAR) Models

- a. Introduction to VAR models
 - Granger Causality
 - Sationarity and model construction

VI. Spurious regression and Cointegration

- a. Spurious regression
- b. Introduction to cointegration
- c. Applications: Pair trading and index arbitrage

The following topics will be covered if time allows:

Continuous-time models, FARMA (Fractional Autoregressive-Moving Average) models, GARCH (Generalized Autoregressive Conditional Heteoscedastic) models, intervention analysis, Kalman filter and state space models, spectral Analysis, threshold Models, transfer function models

Grading	SS457/2202
Midterm exam	20 % / 0%
Group project	40 % /50%
Final exam	40 % /50%

Textbook

Walter Enders (2004), Applided Econometric Time Series, Wiely, Second Ed. (available in the bookstore)

Reference Books

- 1. Carol Alexander (2003), Market Models: A Guide to Financial Data Analysis, Wiley.
- 2. P. J. Brockwell & R. A. Davis (1991), Time Series: Theory and Method, Springer; 2nd Ed.
- 3. Ernest P. Chan (2009), Quantitative trading: how to build your own algorithmic trading business, Wiley.
- 4. James D. Hamilton (1994), Time Series Analysis, Princeton University Press.
- 5. K. W. Hipel & A. I. McLeod (2005), *Time Series Modelling of Water Resources and Environmental Systems*, http://www.stats.uwo.ca/faculty/aim/1994Book/default.htm
- 6. Ruey S. Tsay (2000), Analysis of Financial Time Series, Wiley, 1st Ed.
- 7. Ganapathy Vidyamurthy (2004), Pairs trading: Quantitative Method and Analysis, Wiley.
- 8. William W. S. Wei (2006), *Time Series Analysis: Univariate and Multivariate Methods*, Addison Wesley, Second Ed.