ACT 247: Introductory Life Contingencies (Summer 2021)

Instructor Information:
Name: Basil Singer, PhD, FSA, CERA
Contact: basil.singer@utoronto.ca

High level description
Probability theory applied to survival and to costs and risks of life assurances, life annuities, and pensions; analysis of survival distributions; international actuarial notation

Course outcomes:
By the end of the course, you will be able to:

- Understand the key elements behind the mathematics of pricing key life insurance products: sequences and series, probability theory, and time value at money
- Recognize life contingency notation and comfortably apply it
- Understand the concept behind and apply life contingency tables
- Understand and apply parametric survival models for long-term insurance coverages
- Understand the key features of life insurance and apply mathematical relationships to price them
- Understand the key features of life annuities and apply mathematical relationships to price them

Textbook: S. Broverman, Actuarial Science Coursebook for ACT247H + ACT238H 2019-20 Edition

Course tentative outline:
(1) Week 1: Introduction
 a. Introduction
 b. Life insurance products (high level)
 c. ABCs (Section 1):
 i. Key geometric series
 ii. Key integrals
 iii. Probability theory
 1. Intro
 2. Single variable functions
 3. Multiple variable functions
 4. Conditional probability
 5. Independence
 6. Mixture distributions
 7. Distribution functions
iv. Time value of money
d. Modelling survival & mortality (Sections 2 & 3):
 i. Survival probability in the context of life and death
 ii. Time until death
 iii. Force of mortality
 1. Of a newborn
 2. Of a person aged x

(2) Weeks 2 & 3: Life tables & parametric survival models
 a. Life tables (Section 4)
 b. Mean and variance survival metrics (Section 5):
 i. Complete lifetime expectation, T_x
 ii. n-year term expectation of life for x, $T_{x,n}$
 iii. Median and mode lifetime of T_x
 iv. Curtate expectation of life for x, K_x
 v. n-year curtate expectation of life for x, $K_{x,n}$
 vi. Variance of lifetime
 vii. Variance of curtate lifetime
 c. Parametric survival models (Section 6)
 d. Fractional age assumptions (Section 7)
 e. Select and ultimate mortality (Section 8)

(3) Weeks 4 & 5: Life insurance products
 a. Introduction (Sections 9, 10, 11, 12, & 13):
 i. Premise
 ii. Metrics (single policy)
 iii. Metrics (multiple policies)
 iv. Useful recursive expressions (APVs)
 v. Useful continuous/yearly interchanging formula under UDD assumption
 b. Constant paying benefits (Sections 9, 10, 11, & 12):
 i. n-year term insurance
 ii. Whole life insurance
 iii. n-year pure endowment
 iv. n-year endowment insurance
 v. Special n-year endowment insurance
 vi. n-year deferred insurance
 vii. n-year deferred j year term insurance
 c. Varying paying benefits (Sections 11, & 12):
 i. Geometrically increasing benefit
 ii. Whole life increasing insurance
 iii. n-year term increasing insurance
 iv. n-year term decreasing insurance
v. Other continuous varying benefit products
d. Simplifications when assuming distributions (Section 13):
 i. Uniform
 ii. Exponential
 iii. Normal approximation
e. Mathematical relationships between insurance products (Section 13):
 i. Simple, direct relationships
 ii. Recursive relationships
 iii. Discrete and continuous insurance relationships assuming UDD
 iv. Discrete and fractional (whole life insurance only)
v. Covariances

(4) Week 6: Annuity insurance products
 a. Introduction (Sections 14, 15, 16, & 17)
 b. Discrete life annuities (Section 14 & 15)
 i. Whole life annuity due
 ii. n-year temporary life annuity-due
 iii. n-year deferred life annuity-due
 iv. Simplifications under known probability distributions
 c. Continuous life annuities (Section 16)
 i. Continuous whole life annuities
 ii. Continuous n-year temporary life annuity
 iii. Continuous n-year deferred whole life annuity
d. Mathematical relationships between life annuities (Section 17)
 i. Recursive relationships
 ii. Life annuities with m-thly payments
 iii. Varying life annuities
 iv. Modified mortality risk & structured settlements

Course Grading:

1) Assignments (30%):
 a. Assignment 1: 15% (due 2021-07-16Fri 11:59PM – covers W1)
 b. Assignment 2: 15% (due 2021-07-30Fri 11:59PM – covers W1-W3)
 c. Assignment 3: 15% (due 2021-08-13Fri 11:59PM – covers W1-W5)

2) Open book tests (75%):
 a. Midterm 1: 20% (on 2021-07-29Thu 07:00PM to 09:00PM – covers W1-W3)
 b. Midterm 2: 20% (on 2021-08-12Thu 07:00PM to 09:00PM – covers W1-W5)
 c. Final: 20% (on 2021-08-19Thu 07:00PM to 10:00PM – covers W1-W6)

You can earn up to 105 points. Grade is capped at 100 points.
Academic integrity: Because this course is 100% online, it is more difficult to enforce a fair environment that assesses individual performance. Thus, more scrutiny on the teacher’s end will be exercised to ensure that individual-based assessments are based on the individual’s efforts. Moreover, anyone caught cheating (e.g., copying assignments, solving individual-based assessment problems in groups) will be met with the strictest penalties provided by UT’s guidelines.

Canadian Institute of Actuaries (CIA)’s University Accreditation Program (UAP)

ACT247 is an accredited course under the UAP program. You may apply for a credit for Exam LTAM if you achieve the minimum grades for the following three courses: ACT247, ACT348, ACT455. The minimum grade required for ACT247 is 70. For detailed information on UAP, please visit the following webpage:

https://www.cia-ica.ca/membership/university-accreditation-program-home/accredited-universities/accredited-university-detail?pav_universityid=06f6b138-61e5-e511-80b9-00155d111030

Note: CIA will grant credits to students for SOA/CAS examinations based on the achievement of the minimum Grade towards Associateship (ACIA) and Fellowship (FCIA) in CIA. At the time of this agreement, CIA credits are recognized by the following actuarial organizations towards their respective designations:

- Casualty Actuarial Society (CAS): ACAS, FCAS
- UK Institute and Faculty of Actuaries (IFoA): FIA, AIA
- Institute of Actuaries of Australia (IAA): AIAA, FIAA
- Actuarial Society of South Africa (ASSA): AMASSA, FASSA
- American Academy of Actuaries (AAA): MAAA

CIA does not guarantee that credits granted to students under the CIA UAP will be recognized by any other actuarial organizations towards their actuarial designations.

Textbook purchase information:

You may purchase the coursebook on the UofT Bookstore website.

Navigate to the **Digital Course Materials** section on the University of Toronto Bookstore Website at https://uoftbookstore.com/textbooks/access_codes.asp?

From here, scroll down the list and select your course, which appears as:

- STG ACT 230 Coursebook
- STG ACT 240/245 Coursebook
- STG 247/348 Coursebook
- STG 348/455 Coursebook
Follow the instructions to **purchase and download your code**. You will need to check out via the **eBook Shopping Cart** on the page to purchase digital materials, not the regular cart. See screenshot below.